Meet our grantees
Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.
The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.
We showcase our grantees and their projects here and continuously update this page as new projects are added.
Integrating individual-level juvenile welfare in dynamic habitats across time and space
Grantee: Tom Luhring
Institution: Wichita State University, Texas State University, and Stephen F. Austin University
Project summary
The project will track four populations of juvenile lesser sirens in Eastern Texas within and across years. Sirens’ health is directly affected by their environment through the impacts of resource availability on body condition and growth rates. Furthermore, sirens show strong size-dependent and seasonal shifts in antagonistic behaviors, which lead to acute injuries. This project will use water-borne corticosterone release rates to investigate changes in stress physiology as a function of changes in the environment experienced by the individual (population density, drought severity index, water temperature, pH, conductivity) across time and space to understand coping capacity. This data will also be used to investigate the welfare impact of an established marking technique compared to a novel machine-learning approach.
Grantee: Tom Luhring
Institutions: Wichita State University, Texas State University, and Stephen F. Austin University, United States
Grant amount: $162,604
Grant type: Challenge grants
Focal species: Sirens (Siren intermedia)
Conservation status: Least concern
Disciplines: Herpetology, physiology, climate science
Research location: United States
Project summary
The project will track individual juvenile lesser sirens (Siren intermedia) within and across years for four populations in Eastern Texas. The lack of a terrestrial life-stage and severely limited overland dispersal ability means that hydrologically isolated pools function as closed populations, facilitating recaptures and simplifying demographic estimates. Siren health is directly impacted by the effects of the environment (e.g., drought conditions) through the impacts of resource availability on body condition and growth rates. Furthermore, sirens show strong size-dependent and seasonal shifts in antagonistic behaviors such as biting which lead to acute injuries.
Aquatic amphibians are especially well-suited for the collection of water-borne stress hormones (corticosterone), which offer the least invasive method of evaluating an integrated measure of corticosterone levels that are passively being released through the skin, gills, feces, and urine. This project will use water-borne corticosterone release rates to investigate changes in stress physiology as a function of changes in the environment experienced by the individual (population density, drought severity index, water temperature, pH, conductivity) across time and space to understand coping capacity. These data will also be used to investigate the welfare impact of an established marking technique compared to a novel approach based on pattern recognition by a machine-learning algorithm.
Why we funded this project
Juvenile mortality is especially high in amphibians, and amphibian welfare in general is a neglected subject. This project should provide proof of concept for a cost-effective approach for assessing welfare at both an individual and population level. The waterborne measurements have the potential to integrate corticosterone over a longer period of time, increasing its reliability as a welfare indicator. Finally, this project will test a novel, non-invasive approach to mark-recapture studies, which could facilitate much better individual-level welfare research for amphibians and other (especially aquatic) animals in the future.
Photos
Evaluating short- and long-term impacts of injury and illness on wild bird welfare
Grantee: Katie LaBarbera
Institution: San Francisco Bay Bird Observatory
Project summary
Surprisingly little is known about how illness and injury impact the welfare and survival of wild animals, as detecting and assessing injuries and tracking animals to determine their fates is challenging. Yet bird banding stations and wildlife rescues require this information to decide whether birds can be ethically released with long-term impairments. This project will use the San Francisco Bay Bird Observatory (SFBBO)’s long-term bird-banding dataset, which spans over 30 years and 100,000 captures, to investigate these questions in wild birds. Bird banding involves close examination of wild individuals who are frequently recaptured over time. With a high rate of recapture, the SFBBO tracks individuals over years, monitoring their injuries and health, and estimating survival.
Grantee: Katie LaBarbera
Institution: San Francisco Bay Bird Observatory, United States
Grant amount: $20,000
Grant type: Challenge grants
Focal species: Wild birds
Conservation status: Least concern
Disciplines: Wildlife rehabilitation, ornithology
Research location: United States
Project summary
There is surprisingly little known about how illness and injury impact the experience of wild animals. Studying such patterns can be limited by the challenges of detecting and assessing injuries and then following up to determine individual fate in wild animals. The San Francisco Bay Bird Observatory’s (SFBBO) long-term bird-banding dataset (>30 years and >100,000 captures) is well-suited to address these questions in wild birds.
Bird banding involves close examination of wild individuals, and individuals are frequently recaptured over time. The SFBBO has a high rate of recapture, which allows them to track individuals over years and to estimate survival, tracking the state of injuries and bird health over multiple years. Understanding how injury impacts individual welfare and survival is of both intellectual and practical value. Bird banding stations vary considerably in their criteria for deciding whether an injured bird should be released or taken to a wildlife rescue. Wildlife rescues must in turn decide whether birds can be ethically released with long-term impairments; for example, many rescues will euthanize rather than release one-legged songbirds. Banding stations and wildlife rescues need real data on wild birds' experiences and prognoses to inform such policies; otherwise, they risk enacting harm.
Why we funded this project
With thousands of wild animal rehabilitation centers in the US alone, this study could provide information that would allow wild animal rehab staff to make data-driven decisions about their bird patients. We think there may be potential to greatly grow interest in the wild animal welfare community via connections with wild animal rehabilitation groups, and this project could provide connections to that community. The project also advances one of our core goals — understanding what wild animals’ lives are like — using an existing and humanely acquired dataset, by providing data on injury rates, severity, and recovery processes. The data could be used to define a metric of “time spent suffering” for injured songbirds.
Determining the practical and statistical methods necessary for employing field-based metrics of welfare on wild, juvenile, birds
Grantee: Daniel Hanley
Institution: George Mason University
Project summary
Because welfare can vary between individuals and throughout the life of an animal, methods for measuring, assessing, and comparing welfare have been a barrier to our understanding of juvenile welfare. Initial investigations of welfare metrics are needed to estimate age-specific welfare in wild juvenile animals, to determine how they deviate from population-level estimates, and to extend methods and metrics to other systems. This study will examine welfare in free-living prothonotary warblers to establish standardized field and analytical procedures necessary to obtain age-specific animal welfare estimates. Prothonotary warblers are an ideal model system for studying age-specific welfare because they have well-defined life stages, face unique environmental risks, have variable survival, and nest within cavities, affording a degree of standardization and control.
Grantee: Daniel Hanley
Institution: George Mason University, United States
Grant amount: $60,000
Grant type: Challenge grants
Focal species: Prothonotary warbler (Protonotaria citrea)
Conservation status: Least concern
Disciplines: Ornithology, animal behavior, population ecology
Research location: United States
Project summary
The juvenile stage is where welfare conditions are likely the most variable and impactful on an individual’s growth and behavior. Unfortunately, methods for measuring, assessing, and comparing welfare have been a barrier to our understanding of juvenile welfare. Like other aspects of animal life history, welfare will vary between individuals and also over the lives of animals in an age-specific fashion. Thus, metrics such as welfare expectancy can inform us of the welfare that an organism is likely to experience, similar to how life expectancy can provide an estimate on how much longer an organism may live.
This study examines welfare in free-living juvenile songbirds to establish standardized field and analytical procedures necessary to obtain age-specific animal welfare estimates. Prothonotary warblers are an ideal model system for studying age-specific welfare because they have well-defined life stages (i.e., egg, nestling, fledgling, subadult, adult), face unique environmental risks (e.g., drought and flooding), and have variable survival. Furthermore, members of this species nest within cavities, which affords a degree of standardization and control necessary for an initial investigation of welfare metrics. Such initial investigations are crucial to estimate age-specific welfare on wild juvenile animals, to determine how they deviate from population-level welfare estimates, and to extend these methods and metrics to other systems.
Why we funded this project
We funded this project because it sought to explicitly quantify welfare across life stages, using multiple physiological, behavioral, and environmental/demographic indicators. Knowing how (and ideally why) average welfare differs over the course of life in a population could have important implications for interventions to improve their welfare (e.g., fertility control). We were also impressed with this PI because he engages numerous students in their lab and is relatively early in his own career, potentially allowing for pivot to focus more on wild animal welfare. He also demonstrated a good understanding of Wild Animal Initiative’s research on the welfare expectancy framework and sought to put the concepts into practice. That sort of theory-to-practice pipeline would represent a significant step for welfare biology as a research field.
Photos
Thermal imaging to investigate physiological state in altricial nestlings
Grantee: Paul Jerem
Institution: Tufts University
Project summary
Animal stress responses evolved to increase survival, in part by stimulating behaviors that reduce exposure to challenging situations. However, young birds who are entirely reliant on their parents (“altricial”) are incapable of acting to change their circumstances, potentially exposing them to the damaging effects of chronic stress. Such species are known to suppress aspects of their stress physiology during development. However, it remains unclear if other parts of the system remain active and could serve as useful indicators for efforts to improve early life welfare. This project seeks to investigate this possibility in juvenile house sparrows (Passer domesticus) using a novel, non-invasive method for inferring internal state — thermal imaging of body surface temperatures.
Grantee: Paul Jerem
Institution: Tufts University, United States
Grant amount: $37,780
Grant type: Challenge grants
Focal species: House sparrow (Passer domesticus)
Conservation status: Least concern
Disciplines: Physiology, ornithology
Research location: United States
Project summary
Animal stress responses evolved to increase survival, in part by stimulating behaviors that reduce exposure to challenging situations. However, young birds who are entirely reliant on their parents (“altricial”) are incapable of acting to change their circumstances, potentially exposing them to the damaging effects of chronic stress. Such species are known to suppress aspects of their stress physiology during development. However, it remains unclear if other parts of the system remain active and could serve as useful indicators for efforts to improve early life welfare. This project seeks to investigate this possibility in juvenile house sparrows (Passer domesticus) using a novel, non-invasive method for inferring internal state — thermal imaging of body surface temperatures.
Why we funded this project
We especially want to understand juvenile welfare, because in most species that is the most experienced life stage, and often the most vulnerable. However, developmental changes can make it difficult to compare welfare between juveniles and adults. This project will calibrate a non-invasive proxy of welfare that can be applied to both adult and altricial juvenile birds, enabling not only better welfare assessments, but more effective lifetime comparisons. A better understanding of the “shape” of lifetime welfare would in turn inform interventions that might disproportionately affect individuals of certain ages.
Photos
The impact of road noise on the welfare of free-living juvenile white-footed mice
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth
Project summary
This project will examine how road noise impacts the ability of juvenile white-footed mice in Massachusetts to respond to the threat of predation. Preliminary work has shown that experimental manipulation of road noise disrupts the foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive predators’ auditory cues. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap, and their feces will be studied to assess physiological stress and nutritional status.
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth, United States
Grant amount: $60,000
Grant type: Challenge grants
Focal species: White-footed mice (Peromyscus leucopus)
Conservation status: Least concern
Disciplines: Human-wildlife conflict, animal behavior, population ecology, mammalogy
Research location: United States
Project summary
This project will examine the impact of road noise on juvenile welfare in white-footed mice in Massachusetts. The project will focus on how road noise impacts the ability of juveniles to respond appropriately to the threat of predation (the most common cause of juvenile small mammal mortality). Preliminary work has shown that experimental manipulation of road noise (played at 62-65dB, which is equivalent to 100m into the forest from a major thoroughfare to Boston, MA) disrupts the normal foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive auditory cues of predators. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway but without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap (which they voluntarily enter for feed), and their feces will be studied to assess physiological stress and nutritional status.
Why we funded this project
Road noise has dramatically increased and is potentially a major anthropogenic threat to wild animal welfare, and one which might be easily ameliorated through policy changes (e.g., improved sound barriers). This project is especially interesting because it focuses on a less obvious effect of road noise, potentially increasing the risk of predation by masking predator cues. This becomes even more interesting in the context of growing literature on the “ecology of fear,” sublethal effects of predators on prey behavior. If road noise makes prey unaware of risks, it could actually reduce their chronic stress despite exposing them to greater risk of death. We are excited for this project to explore those issues, although we are prepared for a complex result. Additionally, we wanted to support this PI because of their strong record of engaging students in their research and influencing their career trajectories.
Photos
Improving the welfare of farmland invertebrates
Grantee: Dr. Ruth Feber
Institution: University of Oxford
Project summary
In Lepidoptera (butterflies and moths), larvae are much more abundant and less mobile than adults. Larvae are therefore particularly vulnerable to negative stimuli, including starvation and disease. This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera are exposed to agricultural practices that have the potential to affect their welfare. To quantify these impacts, the study will extend the Quality Adjusted Life Year (QALY) methodology to take into account the number of individuals affected by a specified action.
Grantee: Dr. Ruth Feber
Institution: Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Department of Zoology, University of Oxford, United Kingdom
Grant amount: $58,448
Grant type: Challenge grant
Focal species: Butterflies (Rhopalocera sp.)
Conservation status: Near threatened
Disciplines: Entomology, population ecology, physiology
Research location: United Kingdom
Project summary
Invertebrates, particularly insects, often have complex life histories. Juveniles (which make up the overwhelming majority of invertebrate numbers) may experience a range of different life quality outcomes. In Lepidoptera (butterflies and moths), for example, adults are the most visible stage, but the much more abundant larvae are less mobile than adults and are particularly vulnerable to negative stimuli including starvation and disease.
This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera tend to comprise the largest proportion of the total lifespan in temperate regions and, as juveniles, they are exposed to a wide range of agricultural practices that have the potential to affect their welfare. Lepidoptera are also among the better-studied invertebrates, with published data on the ecology, life histories, and survivorship of some species. This knowledge will be used to help inform welfare impact assessments.
The study will adapt the Quality Adjusted Life Year (QALY) methodology to quantify the welfare impacts of agriculture, which has recently been adapted by Teng et al. (2018) to compare the impact of diseases of domestic animals with a Welfare Adjusted Life Year (WALY). This project aims to extend the QALY to take into account the number of individuals affected by a specified action.
Why we funded this project
Farms take up nearly half of the world’s habitable land, but there is a lack of research into how agricultural management practices might impact wild animals, especially invertebrates. In order to improve welfare for invertebrates, we first need to understand how to measure welfare. This project will explore a model to quantify wild insect health and well-being. We were especially attracted to this project because it will repurpose existing data, allowing the research objectives to be accomplished more cheaply and with less animal suffering than might otherwise be required. We were also excited by the PI’s interest in quantifying welfare using a QALY-like framework, which fits perfectly with our utilitarian approach and could lead to actionable policy recommendations.
Photos
Drivers of welfare in American pikas (Ochotona princeps)
Grantee: Johanna Varner
Institution: Colorado Mesa University
Project summary
Pikas (Ochotona princeps) in alpine habitats have recently faced population losses and range retractions. Declines are most prominent in isolated mountain ranges with limited high-elevation habitat, like the La Sals, where pikas are consequently likely to experience lower welfare. This project will assess the welfare of pikas in the La Sals through patterns of survival, population demographics, physiological stress, body condition, ectoparasite load, and hydration. The researchers will also test hypotheses correlating these indicators to habitat quality, and investigate resource competition between pikas and mountain goats.
Grantee: Johanna Varner
Institution: Colorado Mesa University, United States
Grant amount: $28,500
Grant type: Small grants
Focal Species: American pikas (Ochotona princeps)
Conservation status: Least concern
Disciplines: Population ecology, animal behavior, ecological modeling, community ecology
Research location: United States
Project summary
Due to recent population losses and range retractions, pikas (Ochotona princeps) are considered a sentinel for climate change in the alpine. However, declines are most prominent in isolated mountain ranges with limited high-elevation habitat, like the La Sals. Surrounded by low-elevation desert in all directions, pikas in the La Sals are likely to experience lower aggregate welfare (i.e., steeper population declines, greater physiological stress, and lower survivorship). This project will assess the welfare of pikas in the La Sals through patterns of survival, population demographics, physiological stress (fecal glucocorticoid metabolites; FGM), body condition, ectoparasite load, and hydration. The researchers will also test hypotheses correlating these welfare indicators to aspects of habitat quality. Finally, they will also investigate resource competition between pikas and mountain goats as another potential factor in pika welfare.
Why we funded this project
This project addresses our research priority of understanding the welfare implications of competition and other conflicts of interest between wild animals. It also focuses on a highly numerous species, the American pika. In that context, we appreciate that this project will model habitat quality on the spatial scale relevant to individual pika when assessing its association with their welfare. Finally, we value that they will use a wide variety of welfare indicators, representing the domains of physiology, behavior, and environment/demography, with each strengthening interpretation of the other.
Photos
Does population density influence the welfare of wild newts?
Grantee: Luiza Figueiredo Passos
Institution: Liverpool John Moores University
Project summary
This project will explore how the welfare of the widespread great crested newt (Triturus cristatus) is influenced by population density. It will test the hypothesis that optimal conditions for population sustainability could be suboptimal at the individual level, and consequently negative for welfare. The researchers will study the welfare of newts in populations with varying densities throughout England. Welfare will be assessed using the Five Domains Model by collecting measures of health, behavior, and nutrition. Environmental parameters will also be collected to assess the relationship between habitat quality and welfare.
Grantee: Luiza Figueiredo Passos
Institution: Liverpool John Moores University, United Kingdom
Grant amount: $158,060
Grant type: Challenge grants
Focal species: Great crested newt (Triturus cristatus)
Conservation status: Least concern
Disciplines: Physiology, animal behavior, herpetology
Research location: United Kingdom
Project summary
The project seeks to determine how the welfare of the widespread species of great crested newts, Triturus cristatus, is influenced by population density in order to help determine how management practices can foster the welfare of individuals. Based on previous studies that have shown that population size and density correlate negatively with body condition and adult survivorship, this study will test the hypothesis that optimal conditions for population sustainability (i.e., conditions that result in higher juvenile survival) could be suboptimal at the individual level, and consequently negative for welfare. The project will study the welfare of newts in populations with varying densities at different locations in England. Welfare will be assessed using the Five Domains model of animal welfare by collecting measures of health (presence of injuries or diseases, corticosterone level, and telomere attrition), behavior (expression of abnormal behavior, flight response, behavioral restriction), and nutrition (body condition, food availability). Environmental parameters (water quality, shelter availability, predator pressure, proximity to anthropogenic threats) will also be collected to assess the relationship between habitat quality and welfare.
Why we funded this project
We funded this project because it will assess density-dependent welfare using a diverse battery of indicators. It is especially exciting to see them applied to a highly abundant amphibian, as the overwhelming majority of wild animal welfare projects have focused on mammals or birds. The proposing team is also very well qualified and has previously been funded by Wild Animal Initiative, which makes them well-suited to take on an analytically challenging project to disentangle influences of population density on newt welfare.
Find Luiza’s other project, studying house sparrows, here.